Search results for " Suspension"
showing 10 items of 107 documents
Changes of energy fluxes in marine animal forests of the anthropocene: Factors shaping the future seascape
2019
12 pages, 3 figures
Electrochemical detection of nitric oxide in plant cell suspensions
2016
SPE IPM UB; Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.
Energetics, Particle Capture and Growth Dynamics of Benthic Suspension Feeders
2017
Marine benthic communities are dominated by suspension feeders, including those actively pumping water, passively encountering particles, or some combination of the two. The mechanisms by which particles are encountered and retained are now well known for a range of water flow conditions and organism morphologies. Recent research has attempted to quantify the energetic components of suspension feeding, including intake of particles, pumping rates, and metabolic costs of these activities. Energetic models depend strongly on environmental conditions, including temperature, flow speed, and food availability, for example. The effects of these variables have been combined for realistic scenarios…
Modeling of an active torsion bar automotive suspension for ride comfort and energy analysis in standard road profiles
2019
Abstract Chassis technology is evolving towards active suspension, in which actuators can provide forces to each wheel individually. This overcomes the traditional trade-off between comfort and handling, at the expense of increased complexity and electric consumption. To reduce power demand, regenerative solutions capable of harvesting a certain amount of energy otherwise dissipated in vehicle suspensions and to enhance vehicle dynamics for improving ride comfort and road safety at the same time have been researched. In this paper, an active suspension based on a torsion bar is modeled and analyzed under the excitation from standardized road profiles according to the ISO 8608 norm. A skyhoo…
Ratiometric fluorescence live imaging analysis of membrane lipid order in Arabidopsis mitotic cells using a lipid order-sensitive probe
2016
SPE Pôle IPM; International audience; Eukaryotic cells contain membranes exhibiting different levels of lipid order mostly related to their relative amount of sterol-rich domains, thought to mediate temporal and spatial organization of cellular processes. We previously provided evidence in Arabidopsis thaliana that sterols are crucial for execution of cytokinesis, the last stage of cell division. Recently, we used di-4-ANEPPDHQ, a fluorescent probe sensitive to order of lipid phases, to quantify the level of membrane order of the cell plate, the membrane structure separating daughter cells during somatic cytokinesis of higher plant cells. By employing quantitative, ratiometric fluorescence …
Dissipation in suspension system augmented by piezoelectric stack: port-Hamiltonian approach
2020
Analysis of damping in semi-active and active suspension systems is prerequisite for an advanced control and, eventually, energy harvesting functions. This paper addresses the damping in suspension system augmented by the piezoelectric (PE) stack. The Hamiltonian system approach with port-power modeling of single subsystems is used for describing and studying the dissipative properties of piezoelectric stack element, integrated in series with a standard quarter-car suspension. The slightly improved, compared to the underlying passive suspension system, frequency response of the sprung mass acceleration is demonstrated. Moreover, the overall power flow in the system, caused by the disturbing…
Allopurinol partially prevents disuse muscle atrophy in mice and humans
2018
AbstractDisuse muscle wasting will likely affect everyone in his or her lifetime in response to pathologies such as joint immobilization, inactivity or bed rest. There are no good therapies to treat it. We previously found that allopurinol, a drug widely used to treat gout, protects muscle damage after exhaustive exercise and results in functional gains in old individuals. Thus, we decided to test its effect in the prevention of soleus muscle atrophy after two weeks of hindlimb unloading in mice, and lower leg immobilization following ankle sprain in humans (EudraCT: 2011-003541-17). Our results show that allopurinol partially protects against muscle atrophy in both mice and humans. The pro…
Hyperforin Potentiates Antidepressant-Like Activity of Lanicemine in Mice
2018
International audience; N-methyl-D-aspartate receptor (NMDAR) modulators induce rapid and sustained antidepressant like-activity in rodents through a molecular mechanism of action that involves the activation of Ca2+ dependent signaling pathways. Moreover, ketamine, a global NMDAR antagonist is a potent, novel, and atypical drug that has been successfully used to treat major depressive disorder (MDD). However, because ketamine evokes unwanted side effects, alternative strategies have been developed for the treatment of depression. The objective of the present study was to determine the antidepressant effects of either a single dose of hyperforin or lanicemine vs. their combined effects in m…
Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study.
2006
The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techn…
Anatomic Changes After Hyoid Suspension for Obstructive Sleep Apnea: An MRI Study
2005
Objective To assess the effects of isolated hyoid suspension on subjective and objective parameters of obstructive sleep apnea and to evaluate changes in upper airway anatomy with the help of standardized magnetic resonance imaging. Study design and setting Fifteen patients received isolated hyoid suspension. Changes in respiratory disturbance index were assessed with polysomnography, and anatomical changes with standardized magnetic resonance imaging. Snoring, daytime sleepiness, and functional parameters were assessed with questionnaires. Lateral x-ray cephalometry was performed preoperatively. Results Mean respiratory disturbance index was reduced from 35.2 ± 19.1 to 27.4 ± 26.2. Forty p…